The correct option is A (x−yy′)(x+yy′)=a2−b2
x2a2+λ+y2b2+λ=1
Differentiating we get,
2xa2+λ+2yb2λy′=0
or x(b2+λ)+yy′(a2λ)=0
∴λ=−b2x+a2yy′x+yy′
Hence a2+λ=a2−b2x+a2yy′x+yy′=(a2−b2)x+yy′
and b2+λ=b2−b2x+a2yy′x+yy′=−(a2−b2)x+yy′
Putting the values of a2+λ
and b2+λ in the given equation.
(x−yy′)(x+yy′)=a2−b2