Given:
The family of curve is y=a ebx+5 .................. i
Differentiating the equation w.r.t. x,
dydx=a.ebx+5.b
using equation i,
dydx=y.b .............................ii
1y.dydx=b ..........................iii
Again differentiating equation ii w.r.t. x,
d2ydx2=b.dydx=1y.(dydx)2 [using iii]
∴y.d2ydx2=(dydx)2
Hence, the required differential equation is,
y.d2ydx2−(dydx)2=0