wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the direct common tangents of the circles x2+y2+22x4y100=0 and x2+y222x+4y+100=0.

Open in App
Solution

For the circle
x2+y2+22x4y100=0
Center=C1(11,2)
radius=(11)2+22+100=121+4+100=15

For the circle
x2+y222x+4y+100=0
Center=C2(11,2)
radius=(11)2+(2)2+100=121+4100=5

C1C2=(11+11)2+(22)2=105>(r1+r2)=105>(20)


Now, taking
sinθ=15=5OC2OC2=55

now, by using section formula with the ratio of 2:1
(2h113,2k+23)=(11,2)

Solving we get, h=22,k=4

So, slope=y2y1x2x1=422=m

now,
m=tanθ=|m+21112m11|=12

taking the case of,
m=tanθ=m+21112m11=12

m=724

taking the case of,
m=tanθ=m+21112m11=12

m=34

So, the equations would be
y+4=m(x22)

taking m=724

y+4=724(x22)
7x24y250=0
taking m=34

y+4=34(x22)

3x+4y50=0


644449_609615_ans_ad6492921a204b10a57735588154a6dd.PNG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Chord of a Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon