Given: l+m+n=0−−−−(1)
2mn+2ml+nl=0
Now we have from (1), n=−(u+m)
Putting m=−(l+m) in equation (2), we get
−2m(l+m)+2ml+(l+m)l=0
⇒ −2ml−2m2+2ml+l2+ml
⇒l2+ml−2m2=0
(lm)2+(lm)−2=0
Now glm=lm=1±√92=1, 2
Now when lm=1 ⇒ l=m
From (1), 2l+n=0 ⇒ n=−2l
∴ l:m:n=1:1:−2
∴ Direction ratio of the line are 1,1,−2
Direction cosiner are
I=1√12+12+(−2)2, 1√12+12+(−2)2, −2√12+12+(−2)2
⇒ +1√6, 1√6, −2√6 or −1√6, −1√6, 2√6
Case II when lm=−2⇒l=−2m
From (1),−2m+m+n=0 ⇒ n=m
∴ l:m:n=−2m:m:m
=−2:1:1
∴ Directio ratio of the line are −2,1,1
Direction codiner are
−2√−22+12+12, −1√(−2)2+12+12, −1√(−2)2+12+12
⇒ −2√6, +1√6, 1√6 or 2√6, −1√6, −1√6