O(0,0,0)=(x,y,z)
And from the given equation of plane we have a1=2,b=−3,c=6 and d=−14
p= Perpendicular distance of plane from origin
∴p=|−d|√a2+b2+c2
=|−14|√4+9+36
=14√49
=147=2 unit
Equation of the plane with perpendicular distance p from origin is x cosα+ycosβ+zcosγ=p
Here 2x=3y=6z=−14
∴(27)x+(37)y+67z=−2
∴(−27)x+(37)y+(−67)z=2
∴cosα=−27,cosβ=37 and cosγ=−67
are perpendicular direction cosines
Note:
2x−3y+6z=−14
∴−2x+3y−6z=14
∴−a|n|x+d|n|y−cz|n|=14
∴ where ¯n=(−2,3,−6)
∴|¯n|=√49=7
∴−27x+37y−67z=2
∴ Direction cosine are =(−27,37,−67).