Find the direction cosines of the sides of the triangle whose vertices are (3,5,-4), (-1,1,2) and (-5,-5,-2).
Let the vertices of the triangle be A(3,5,-4), B(-1,1,2) and C(-5,-5,-2) respectively.
The direction ratios of side AB are (-1,-3,1-5,2-(-4)) (-4,-4,2+4), i.e., (-4,-4,6).
[∴ If A(x1,y1,z1) and B(x2,y2,z2) then dr's
of AB=(x2−x1,y2−y1,z2−z1)]
Then, magnitude of AB,
|AB|=√(−4)2+(−4)2+(6)2 =√16+16+36=√68=2√17
Therefore, the direction cosines of AB are
−42√17,−42√17,62√17⇒−2√17,−2√17,3√17
[∴ If a,b,c are direction ratios, then direction cosines are
a√a2+b2+c2,b√a2+b2+c2,c√a2+b2+c2]
Similary, the direction ratios of side BC are (-5-(-1)), (-5-1) and (-2-2) ie., (-4,-6,-4).
Magnitude of BC, |BC|=√(−4)2+(−6)2+(−4)2=√68=2√17
Therefore, the direction cosines of BC are
−42√17,−62√17,−42√17⇒−2√17,−3√17,−2√17
The direction ratios of side CA are (-5-3), (-5 -5) and (-2-(-4)) i.e., (-8,-10,2) or (8,10,-2).
|CA|=√(−8)2+(−10)2(2)2=√64+100+4=√168=2√42
Therefore, the direction cosines of AC are
82√42,102√42,−22√42⇒4√42,5√42,−1√42