Find the direction cosines of the vector ^i+2^j+3^k
Let a=^i+2^j+3^k Then, |a|=√12+22+32=√14 ∴ ^a=a|a|⇒^a=1√14(^i+2^j+3^k) ⇒ ^a=1√14 ^i+2√14 ^j+3√40 ^k Hence, direction cosines of the given vector are 1√14,2√14,3√14