Find the direction cosines of the vector joining the points A(1,2,−3) and B(−1,−2,1), directed from A to B.
The given points are A(1,2,−3) and B(−1,−2,1).
i.e., x1=1, y1=2, z1=−3 and x2=−1, y2=−2, z2=1
Vector AB=(x2−x1)^i+(y2−y1)^j+(z2−z1)^k=(−1−1)^i+(−2−2)^j+[1−(−3)]^k=−2^i−4^j+4^k
Comparing with X=x^i+y^j+z^k we get x=−2, y=−4, z=4 Now, magnitude
|AB|=√x2+y2+z2=√(−2)2+(−4)2+42=√4+16+16=√36=6
Direction cosines of a vector X=x^i+y^j+z^k are x|X|,y|X|,z|X|
∴ Direction cosines of AB are −26,−46,46 or −13,−23,23.