Given equations are
l−5m+3n=0.....(1)7l2+5m2−3n2=0......(2)
From (1), l=5m−3n
Substituting in (2) ⇒7(5m−3n)2+5m2−3n2=0
⇒7(25m2+9n2−30mn)+5m2−3n2=0
⇒6m2−7mn+2n2=0
⇒(3m−2n)(2m−n)=0
⇒m=23n or m=n2
l=5(23)n−3n=13n or l=5n2−3n
=−n2
So, the direction cosines are 13n,23n,n
or
−n2,n2,n
⇒ direction ratios are 1,2,3 or −1,1,2
∴ The direction cosines are ±1√14,±2√14,±3√14
or ∓1√6,±1√6,±2√6