Let the slope of line passing (1,2) be m
Then equation of line is
y−2=m(x−1)mx−y+2−m=0........(i)
Given line is x+y=4
i.e. y=4−x
Substituting y in (i), we get
mx−4+x+2−m=0(m+1)x=2+mx=m+2m+1
Now, y=4−x
⇒y=4−m+2m+1⇒y=3m+2m+1
So the point of intersection is P(m+2m+1,3m+2m+1)
Distance of P from (1,2) is √63
√(m+2m+1−1)2+(3m+2m+1−2)2=√63
Squaring both sides, we get
(m+2m+1−1)2+(3m+2m+1−2)2=691(m+1)2+m2(m+1)2=233+3m2=2m2+2+4mm2−4m+1=0m=4±√16−42m=4±2√32m=2±√3
tanθ=2±√3
When tanθ=2+√3⇒θ=75∘
When tanθ=2−√3⇒θ=15∘
So the straight line may be inclined at angle 75∘ or 15∘.