Find the discriminant of each of the following equations :
(i) 2x2−7x+6=0 (ii) 3x2−2x+8=0
(iii) 2x2−5√2x+4=0 (iv) √3x2+2√2x−2√3=0
(v) (x−1)(2x−1)=0 (vi) 1−x=2x2
(i) 2x2−7x+6=0
The given quadratic equation is in the form of
ax2+bx+c=0
Where, a=2,b=−7,c=6
Thus, discriminant D=b2−4ac
=72−4×2×6
=49−48
∴D=1
(ii) 3x2−2x+8=0
Comparing with ax2+bx+c=0, we get
a=3,b=−2,c=8
Thus, the discriminant D=b2−4ac
=(−2)2−(4×3×8)
=4−96
∴D=−92
(iii) 2x2−5√2x+4=0
Where a=2,b=−5√2,c=4
D=b2−4ac
=(−5√2)2−4×2×4
=50−32
∴D=18
iv) √3x2+2√2x−2√3=0
a=√3,b=2√2,c=−2√3
D=b2−4ac
=(2√2)2−4×√3×−2√3
=8+24
∴D=32
(v)(x−1)(2x−1)=0
2x2−x−2x+1=0
2x2−3x+1=0
Where a=2,b=−3,c=1
D=b2−4ac
=(−3)2−4×2×1
=9−8
∴D=1
(vi) 1−x=2x2
Given equation is written as
2x2+x−1=0
Where a=2,b=1,c=−1
D=b2−4ac
=12−(4×2×−1)
=1+8
∴D=9