∣∣
∣∣x−x1y−y1z−z1x2−x1y2−y1z2−z1x3−x1y3−y1z3−z1∣∣
∣∣=0
Given, the three points are,
A(3,−1,2),B(5,2,4) and C(−1,−1,6)
So, x1=3,y1=−1,z1=2,x2=5,y2=2,z2=4 and x3=−1,y3=−1,z3=6
∣∣
∣
∣∣x−3y−(−1)z−25−32−(−1)4−2−1−3−1−(−1)6−2∣∣
∣
∣∣=0
∣∣
∣∣x−3y+1z−2232−404∣∣
∣∣=0
⇒ (x−3)[12−0]−(y+1)[8+8]+(z−2)[0+12]=0
⇒ (x−3)(12)−16(y+1)+12(z−2)=0
⇒ 3(x−3)−4(y+1)+3(z−2)=0
⇒ 3x−9−4y−4+3z−6=0
⇒ 3x−4y+3z=19
∴ Equation of plane is 3x−4y+3z=19
Comparing with Ax+By+Cz=D we get,
A=3,B=−4,C=3 and D=19
Distance of point form plane =∣∣∣Ax1+By1+Cz1+−D√A2+B2+C2∣∣∣
=∣∣
∣∣(3×6)+(−4×5)+(3×9)−19√32+42+32∣∣
∣∣
=∣∣∣18−20+27−19√9+16+9∣∣∣
=∣∣∣6√34∣∣∣
=6√34
=6√34×√34√34
=6√3434
=3√3417