The general equation of a plane passing through A(2,5,−3) is a(x−2)+b(y−5)+c(z+3)=0--- (1)
It will pass through B(−2,−3,5) and C(5,3,−3) if
a(−2−2)+b(−3−5)+c(5+3)=0⇒−4a−8b+8c=0
=a+2b−2c=0--- (2)
and a(5−2)+b(3−5)+c(−3+3)=0⇒3a−2b=0--- (3)
Solving (2) and (3) by cross multiplying method, we get
a0−4=b−6−0=c−2−6⇒a−4=b−6=c−8
⇒a2=b3=c4=λ
So, a=2λ,b=3λ,c=4λ
Put these values of a, b and c in (1), we get
2λ(x−2)+3λ(y−5)+4λ(z+3)=0
⇒2x−4+3y−15+4z+12=0
⇒2x+3y+4z−7=0
We know that the distance of a point (x1,y1,z1) from plane ax+by+cz+d=0 is given as
d=|ax1+by1+cz1+d|√a2+b2+c2
=|2(7)+3(2)+4(4)−7|√4+9+16
=|14+6+16−7|√29⇒29√29⇒√29.