Find the distance of a point (2,4,-1) from the line. x+51=y+34=z−6−9.
We have, equation of the line as x+51=y+34=z−6−9=λ.
⇒x=λ−5,y=4λ−3,z=6−9λ
Let the coordinates of L be (λ−5,4λ−3,6−9λ), then Dr's of PL are (λ−7,4λ−7,7−9λ).
Also, the direction ratios of given line are proportional to 1,4,-9.
Since, PL is perpendicular to the given line.
∴(λ−7).1+(4λ−7).4+(7−9λ).(−9)=0
⇒λ−7+16λ−28+81λ−63=0
⇒98λ=98⇒λ=1
So, the coordinates of L are (-4,1,-3).
∴ Required distance, PL=√(−4−2)2+(1−4)2+(−3+1)2=√36+9+4=7 units