wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.

Open in App
Solution

To find the point intersection of the lines x + 2y = 5 and x − 3y = 7, let us solve them.

x-14-15=y-5+7=1-3-2x=295, y=-25

So, the equation of the line passing through 295,-25 with slope 5 is

y+25=5x-2955y+2=25x-14525x-5y-147=0

Let d be the perpendicular distance from the point (1, 2) to the line 25x-5y-147=0

d=25-10-147252+52=132526

Hence, the required perpendicular distance is 132526

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Straight Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon