Find the distance of the point (- 1, - 5,- 10) from the point of intersection of the line r=2^i−^j+2^k+λ(3^i+4^j+2^k) and the plane r.(^i−^j+^k)=5
Given equation of line r=2^i−^j+2^k+λ(3^i+4^j+2^k) . . . (i)
and the equation of plane r.(^i−^j+^k)=5 . . . (ii)
Point of intersection of Eqs. (i) and (ii) is
[2^i−^j+2^k+λ(3^i+4^j+2^k)].(^i−^j+^k)=5⇒ 2+1+2+λ(3−4+2)=5⇒5+λ=5⇒λ=0
On putting λ = 0 in Eq. (i), we get r=2^i−^j+2^k
And r is the position vector of the point (2, -1, 2).
Distance between the point (-1, -5, -10) and (2, -1, 2)
=√(−1−2)2+(−5+1)2+(−10−2)2=√9+16+144=√169=13 units