Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x - 4y + 8 = 0.
Here (x1, y1)=A (2, 5) Slope of required line
It is given that required line is parallel to
3x−4y+8=0
⇒ 4y=3x+8
⇒ y=34x+2
∴ tan θ=34
⇒ sin θ=35, cos θ=45
∴ Equation of required line
x−x1cos θ=y−y1sin θ=r
x−245=y−535=r
or
p(45r+2,3r5+5)
and P lies in 3x+y+4=0
∴ 3(43r+2)+(3r5+5)+4=0
⇒ 12r+30+3r+25+20=0
⇒ 15r+75=0
⇒ r=5