Find the distance of the point (3, 5) from the line 2 x + 3 y = 14 measured parallel to a line having slope 1/2.
Here, (x1, y1)=A (3, 5), tan θ=12
⇒ sin θ=1√12+22 and cos θ=2√12+22
⇒ sin θ=1√5 and cos θ=2√5
So, the equation of the line passing
through (3, 5) and having slope 12 is
x−x1cos θ.=y−y1sin θ
⇒ x−32√5=y−51√5
⇒ x−2y+7=0
Let x−2y+7=0 intersect the line 2x+3y=14 at point P.
Let AP = r
Then, the coordinates of P are given by
x−32√5=y−51√5=r
⇒ x=3+2r√5 and y=5+r√5
Thus, the coordinates of P are
(3+2r√5,5+r√5)
Clearly, P lies on the line 2x+3y=14
∴ 2(3+2r√5)+3(5+r√5)=14
⇒ 6+4r√5+15+3r√5=14
⇒ 7r√5=−7
⇒ r=−√5
Hence, the distance of the point (3, 5)
from the line 2x+3y=14 is √5
So, the coordinates of P1 and P2 are (1+r cos θ, 5+r sin θ) and (1−r cos θ, 5−r sin θ), respectively.
Clearly, P1 and P2 lie on 5x−y−4=0
and 3x+4y−4=0, respectively
∴ 5(1+r cos θ)−5−r sin θ−4=0 and
3(1−r cos θ)+4(5−r sin θ)−4=0
⇒ r=45 cos θ−sin θ and
r=193 cos θ+4 sin θ
⇒ 45 cos θ−sin θ=193 cos θ+4 sin θ
⇒ 95 cos θ−19 sin θ=12 cos θ+16 sin θ
⇒ 83 cos θ=35 sin θ
⇒ tan θ=8335
Thus, the equation of the required line is
y−5x−1=tan θ
⇒ y−5x−1=8335
⇒ 83x−35y+92=0