3x+4y=0x=−43y......(i)2x−3y+5=0
substituting x from (i)
2(−43y)−3y=−583y+3y=517y3=5⇒y=1517x=−43yx=−43.1517=−2017
So the point of intersection is P(−2017,1517)
Let length of perpendicular from P to 5x−2y=0 be p
p=∣∣∣5(−2017)−2(1517)∣∣∣√52+(−2)2p=∣∣∣−10017−3017∣∣∣√29p=13017√29