⇒x=ak−2,y=bk+3,z=ck−4
Thus coordinate of any point on L are (ak−2,bk+3,ck−4)
Equation of the given line
L1:x+23=2y+34=3z+45=λ(let)
⇒(ak−2)+23=2bk+6+34=3ck−12+45=λ
⇒ak3=2bk+94=3ck−85=λ ...(2)
⇒a=3λk,b=4λ−92k,c=5λ+83k
Since, the line L and plane P:4x+12y−3z+1=0 are parallel
So,
4a+12b−3c+1=0⇒12λk+12(4λ−9)2k−3(5λ+8)3k=0
⇒31λ−62k=0⇒λ=2⇒a=6k,b=−12k,c=6k
Thus, equation of L are x+26=y−3−12=z+46
And
any point on L has coordinate (6k−2,−12k+3,6k−4)
Now
λ=9k3=6k×k3=2
Thus
L1:x+23=2y+34=3z+45=2
Thus
L and L1 intersect at (4,52,2)
Thus,
Required distance =√(4+2)2+(52−3)2+(2+4)2=172
Hence, option A.