Find the domain and range of the following real functions:
(i) f(x)=−|x| (ii) f(x)=√9−x2
(i) Here f(x) = - |x|
The function is defined for all real values of x.
∴ Domain of function = R
Now when x < 0, |x| = - x
∴f(x)=−(−x)=x<0
When x = 0, |x| = 0
∴f(x)=−x<0
So f(x)≤0 for all real values of x.
∴ Range of function =(−∞,0].
(ii) Here f(x)=√9−x2
The function is not defined when 9−x2<0.
∴ Domain of function ={x:9−x2≥0}
={x:x2−9≤0}
={x:(x+3)(x−3)≤0}=[−3,3]
Now f(x)=√9−x2≥0 for x ϵ [−3,3]
∴ Range of function =[0,∞).