Find the domain and range of the function given by f(x)=1√x−[x], where [x] is greatest integer function.
We have, f(x)=1√x−[x]
for domain of f:we know that,
0≤x−[x],1,∀xϵR
Also, x−[x]=0∀xϵZ
∴0<x−[x]<1,∀xϵR−Z
⇒f(x)=1√x−[x]∀xϵR−Z
∴Domain of f(x)=R−Z
For range of f:we have 0<x−[x]<1,∀xϵR−Z
⇒0<√x−[x]<1,∀xϵR−Z
⇒1<1√x−[x]<∞,∀xϵR−Z
⇒1<f(x)<∞,∀xϵR−Z
∴Range of f(x)=(1,∞)