Find the domain and the range of the real function, f(x)=3(2−x2).
We have, f(x)=3(2−x2).
Clearly, f(x) is defined for all real values of x except those for which
2−x2=0,i.e., x=±√2
∴ dom (f) =R−{−√2,√2}.
Let y=f(x). Then,
y=3(2−x2)⇒2y−x2y=3⇒x2y=2y−3
⇒x2=2y−3y⇒x=±√2y−3y……(i)
It is clear from (i) that x will take real values only when 2y−3y≥0.
Now, 2y−3y≥0⇔(2y−3≤0 and y<0) or (2y−3≥0 and y>0)
⇔(y≤32 and y<0) or (y≥32 and y>0)
⇔(y<0) or (y≥32)
⇔yϵ(−∞,0) or yϵ[32,∞)
⇔yϵ(−∞,0)∪[32,∞)
∴ range (f) =(−∞,0)∪[32,∞)
Hence, dom (f)=R−{−√2,√2} and range (f) =(−∞,0)∪[32,∞)