The correct option is A (0,1]∪[4,5)
log1/2(5x−x24)
=ln(5x−x24)−ln2
=−ln(5x−x24)ln2
Therefore for real value of f(x),
0<(5x−x24)<1
Or
0<5x−x2<4
Now
5x−x2>0
or
x(5−x)>0
x>0 and x<5
xϵ(0,5) ...(i)
And
5x−x2<4 implies
x2−5x+4>0
(x−4)(x−1)>0
x>4 and x<1
Hence
xϵ(−∞,−1)∪(4,∞) ...(ii)
From i and ii
xϵ(0,1)∪(4,5).