Find the domain of each of the following real valued functions of real variable:
(i) f(x)=√x−2
(ii) f(x)=1√x2−1
(iii) f(x)=√9−x2
(iv) f(x)=√x−23−x
We have,
f(x)=√x−2
Clearly, f(x) assumes real values, if
x−2≥0
⇒x≥2
⇒xϵ[2,∞]
(ii) We have,
f(x)=1√x2−1
Clearly, f(x) assumes real values, if
x2−1>0
⇒(x−1)(x+1)>0 [∵a2−b2=(a−b)(a+b)]
⇒x<−1 or x>1
⇒xϵ(−∞,−1)∪(1,∞)
Hence, domain (f)=(−∞,−1)∪(1,∞)
(iii) We have,
f(x)=√9−x2
Clearly, f(x) assumes real values, if
9−x2≥0
⇒9≥x2
⇒x2≤9
⇒−3≤x≤3
⇒xϵ[−3,3]
Hence, domain (f) = [-3, 3]
(iv) We have,
f(x)=√x−23−x
Clearly, f(x) assumes real values, if
9−x2≥0
⇒9≥x2
⇒x2≤9
⇒−3≤x≤3
⇒xϵ[−3,3]
Hence, domain (f) = [2, 3]