(i) Given:
Clearly, f (x) assumes real values if x 2 ≥ 0.
⇒ x ≥ 2
⇒ x ∈ [2, ∞)
Hence, domain (f) = [2, ∞) .
(ii) Given:
Clearly, f (x) is defined for x2 1 > 0 .
(x + 1)(x 1) > 0 [ Since a2 b2 = ( a + b)(a - b)]
x < 1 and x > 1
x ∈ (∞ , 1) ∪ (1, ∞)
Hence, domain (f) = ( ∞ , 1) ∪ (1, ∞)
(iii) Given:
We observe that f (x) is defined for all satisfying
9 x2 ≥ 0 .
⇒ x2 9 ≤ 0
⇒ (x + 3)(x 3) ≤ 0
⇒ 3 ≤ x ≤ 3
x ∈ [ 3, 3]
Hence, domain ( f ) = [ 3, 3]
(iv) Given:
Clearly, f (x) assumes real values if
x 2 ≥ 0 and 3 x > 0
⇒ x ≥ 2 and 3 > x
⇒ x ∈ [2, 3)
Hence, domain ( f ) = [2, 3) .