The correct option is A =(3,π)∪(π,3π2)∪(3π2,5)
f(x) is defined if (log|sinx|(x2−8x+23)−3log|sinx||sinx|)>0
⇒log|sinx|(x2−8x+23)8>0)(as3log2|sinx|=log28log2|sinx|)=log|sinx|8
The is true, if
|sinx|≠0,1 and x2−8x+238<1
(as |sinx|<1⇒log|sinx|a>0⇒a<1)
Now, x2−8x+238<1
⇒x2−8x+23<0
⇒x∈(3,5)−{π,3π4}
Hence, domain =(3,π)∪(π,3π2)∪(3π2,5)