Given equation of hyperbola is x2−3y2+6x+6y+18=0
(x2+6x)−(3y2−6y)=−18
(x2+6x+9−9)−3(y2−2y+1−1)=−18
(x+3)2−9−3(y−1)2+3=−18
3(y−1)2−(x+3)2=12
(÷ by 12) (y−1)24−(x+3)212=1; Centre (−3,1)
Transverse axis is parallel to y-axis
a2=4,b2=12
e=√1+b2a2=√1+124=√1+3=2
a=2,e=2
ae=2×2=4;e=2
Centre=(−3,1); Foci=(0,±ae)=(0,±4)
(i.e.,) F1=(0,4)+(−3,1)=(−3,5)
F2=(0,−4)+(−3,1)=(−3,−5)
Vertices (0,±a)=(0,±2)
(i.e.,) V1=(0,2)+(−3,1)=(−3,3)
and V2=(0,−2)+(−3,1)=(−3,−1)