Find the eccentricity, coordinates of foci, length of the latus-rectum of the following ellipse:
(i)4x2+9y2=1
(ii)5x2+4y2=1
(iii)4x2+3y2=1
(iv)25x2+16y2=1600
(v)9x2+25y2=225
(i) 4x2+9y2=1
⇒x214+y219=1
This is in the form x2a2+y2b2=1,
where a2=14 and b2=19, i.e., a=12 and b=13
Clearly a>b
Now, e=√1−b2a2
⇒e=√1−1914
⇒e=√1−49
⇒e=√53
Coordinates of the foci = (±ae,0)=(±√56,0)
Length of the latus rectum= 2b2a
=2×1912=49
(ii) 5x2+4y2=1
⇒x215+y214=1
This is of the form x2a2+y2b2=1
where a2=15 and b2=14, i.e.,
a=1√5 and b=12
Clearly b>a
Now, e=√1−a2b2
⇒e=√1−1514
⇒e=√1−45
⇒e=1√5
Coordinates of the foci
=(0,±be)=(0,±12√5)
Length of the latus rectum =2a2b
=2×1512
=45
(iii) We have,
4x2+3y2=1
⇒x214+y213=1 ...(i)
This is of the form x2a2+y2b2=1, where a2=14 and b2=13 i.e.,
a=12 and b=1√3
Clearly, b>a, therefore the major and minor axes of the ellipse (i) are along y and x axes respectively.
Let e be the eccentricity of the ellipse. Then,
e=√1−a2b2
=√1−1413
=√1−34
=√14
∴e=12
The coordinates of the foci are (0, be) and (0,-be) i.e., (0,12√3) and (0,−12√3)
Now,
Length of the latus rectum = 2a2b
=2×141√3
=√32
(iv) We have,
25x2+16y2=1600
⇒25x21600+16y21600=1 ⇒x264+y2100=1
This is of the form x2a2+y2b2=1, where a2=64 and b2=100 i.e.,
a=8 and b=10
Clearly, b>a, therefore the major and minor axes of the ellipse (i) are along y and x axes respectively.
Let e be the eccentricity of the ellipse. Then,
e=√1−a2b2
=√1−64100
=√36100
=610
=35
The coordinates of the foci are (0,be) and (0,-be) i.e., (0,6) and (0,-6).
Now,
Length of the latus rectum = 2a2b
=2×6410
=645
(v) 9x2+25y2=225
⇒x225+y29=1
This is of the form x2a2+y2b2=1, where
a2=25 and b2=9, i.e., a=5 and b=3
Clearly, a>b
Now, e=√1−b2a2
⇒e=√1−925
⇒e=√1625
⇒e=45
Coordinates of the foci =(±ae,0)=(±4,0)
Length of the latus rectum = 2b2a
=2×95
=185