wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the eccentricity, coordinates of foci, length of the latus-rectum of the following ellipse:
(i) 4x2 + 9y2 = 1
(ii) 5x2 + 4y2 = 1
(iii) 4x2 + 3y2 = 1
(iv) 25x2 + 16y2 = 1600.
(v) 9x2 + 25y2 = 225

Open in App
Solution

(i) 4x2+9y2=1x214+y219=1This is of the form x2a2+y2b2=1, where a2=14 and b2=19, i.e. a=12and b=13.Clearly a>bNow, e=1-b2a2e=1-1914e=1-49e=53Coordinates of the foci=±ae, 0=±56,oLength of the latus rectum= 2b2a =2×1912 =49
(ii) 5x2+4y2=1x215+y214=1This is of the form x2a2+y2b2=1, where a2=15 and b2=14, i.e. a=15and b=12. Clearly b>aNow, e=1-a2b2e=1-1514e=1-45e=15Coordinates of the foci=0,±be= 0,±125Length of the latus rectum= 2a2b =2×1512 =45

(iii) 4x2+3y2=1x214+y213=1This is of the form x2a2+y2b2=1, where a2=14 and b2=13, i.e. a=12and b=13. Clearly, b>aNow, e=1-a2b2e=1-1413e=1-34e=12Coordinates of the foci=0,±be= 0,±123Length of the latus rectum= 2a2b =2×1413 =32

(iv) 25x2+16y2=1600x264+y2100=1This is of the form x2a2+y2b2=1, where a2=64 and b2=100, i.e. a=8 and b=10.Clearly, b>aNow, e=1-a2b2e=1-64100e=36100e=610 or 35Coordinates of the foci= 0,±6Length of latus rectum= 2a2b =2×6410 =645
(v) 9x2+25y2=225x225+y29=1This is of the form x2a2+y2b2=1, where a2=25 and b2=9, i.e. a=5 and b=3.Clearly, a>bNow, e=1-b2a2e=1-925e=1625e=45 Coordinates of the foci=±ae, 0= ±4, 0Length of latus rectum= 2b2a =2×95 =185

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ellipse and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon