Given straight line xα+yβ=1 or yβ=1−xα
Squaring both sides, we get
y2β2=1+x2α2−2xα⇒α2β2=α2−2xα+x2y2 ....(1)
Also, b2α2+a2β2=1⇒α2β2=α2−b2a2 ...(2)
Eliminating α2β2 from (1) using (2), we get
α2−b2a2=α2−2xα+x2y2
→y2α2−b2y2=a2α2−2a2xα+a2x2
⇒(y2−a2)α2+2a2xα−(a2x2+b2y2)=0
This is a quadratic equation and to find the envelop we need to equate the discriminat to zero.
Therefore, 4a4x2+4(y2−a2)(a2x2+b2y2)=0
⇒a4x2+a2x2y2+b2y4−a4x2−a2b2y2=0
⇒a2x2+b2y2=a2b2
⇒x2b2+y2a2=1