Find the equaion of the hyperbola whose
(i) focus is (0,3), directrix is x+y-1=0 and eccentricity=2
(ii) foucs is (1,1), directrix is 3x+4y+8=0 and eccentricity=2
(iii) focus is (1,1), directrix is 2x+y=1 and 3ccentricity=√3
(iv) focus is 92,-1), firectrix is 2x+3y=1 and eccentricity =2.
(v) focus is (a,0).directrix is 2x-y+a=0 and eccentricity =43
(vi) focus is (2,2), directiex is x+y=9 and eccentricity =2.
(i)Let S(0,3) be the focus and P(x,y) be a point on the hyperbola.
Draw PM perpendicular from P on the directrix.Then by definitionSP=ePM⇒SP2=ePM2⇒(x−0)2)+(y−3)2=(2)2[x−y+1√12+12]2 [∵=2]⇒x2+y2+9−6y=4[x+y−1]22⇒x+2+y2−6y+9=2(x+y−1)2⇒x+2+y2−6y+9=2[x2+y2+(−1)2+2xy+2×y×(−1)+2×(−1)×x]⇒x2+y2−6y+9=2[x2+y2+1+2xy−2y−2x]⇒x2+y2−6y+9=2x2+2y2+2+4xy−4y−4x⇒2x2−x2+2y2−y2+4xy−4x−4y+6y+2−9=0⇒x2+y2+4xy−4x+2y−7=0This is the required equation of the hyperbola.(ii)Let S(1,1) be the focus and P(x,y)be a point on the hyperbola.
Draw PM perpendicular from P on the directrix .Then by definition SP=ePM⇒SP2=ePM2⇒(x−1)2)+(y−1)2=(2)2[3x+4y+8√32+42]2 [∵=2]⇒x2+1−2x+y2+1−2y=4[3x+4y+8√25]⇒x2+y2−2x−2y+2=4(2x+4y+8)225⇒23x2+25y2−50x−50y+50=4[9x2+16y2+6y+24xy+64y+48x]⇒25x2+25y2−50x−50y+50=36x2+64y256+96xy+256y+192x⇒36x2−25x2+64y2−25y2+96xy+192x+50x+256y+50y+256−50=0⇒11x2+39y2+96xy+242x+306y+206=0This is the required equation of the hyperbola .(iii)Let S(1,1) be the focus and P(x,y) be a point on the hyperbola.
Draw PM perpendicular from P on the directrix.Then by definitionSP=ePM⇒SP2=e2PM2⇒(x−1)2)+(y−1)2=(√3)2[2x−y−1√22+22]2 [∵=2]⇒x2+1−2x+y2+1−2y=3[2x−y−1]25⇒5[x2+y2−2x−2y+2]=3(2x+y−1)2⇒5x2+5y2−10x−10y+10=3[(2x)2+y2+(−1)2+2×2x×y+2×y×(−1)+2×(−1)×2x]⇒5x2+5y2−10x−10y+10=3[4x2+y2+1+4xy−2y−4x]⇒5x2+5y2−10x−10y+10=12x2+3y2+3+12xy−6y−12x⇒12x2−5x2+3y2−5y2+12xy−12x+10x−6y+10y+3−10=0⇒7x2−2y2+12xy−2x+4y−7=0This is the required equation of the hyperbola.(iv)Let S(2,1) be the focus and P(x,y) be a point on the hyperbola.
Draw PM perpendicular from P on the directrix.Then by definitionSP=ePM⇒SP2=e2PM2⇒(x−2)2)+(y+1)2=22[2x+3y−1√22+32]2 [∵e=2]⇒x2+4−4x+y2+1−2y=4[2x−3y−1]213⇒13[x2+y2−4x+2y+5]=4(2x+3y−1)2⇒13x2+13y2−52x+26y+65=4[2x+3y−1]2⇒13x2+13y2−52x+26y+65=4⇒[(2x2)2+(3y)2+(−1)2+2×2x×3y+2×3y×(−1)+2×(−1)×2x]⇒13x2+13y2−52x+26y+65=4[4x2+9y2+1+12xy−6y−4x]⇒13x2+13y2−52x+26y+65=16x2+36y2+4+48xy−24y−16x⇒16x2−13x2+36y2+−13y2+48xy−16x+52x−24y−26y+4−65=0⇒3x2+23y2+48xy+36x−50y−61=0This is the required equation of the hyperbola(v)Let S(a,0)be the focus and P(x,y)be a point on the hyperbola.
Draw PM perpendicular from P on the directrix .Then by definitionSP=ePM⇒SP2=ePM2⇒(x−a)2+(y−0)2=(43)2 [2x−y+a√22+(−1)2]2 [∵e=43]⇒x2+a2−2ax+y2=169×[2x−y+a]25⇒45[x2+y2−2ax+a2]=16[2x−y+a]2⇒45x2+45y2−90ax+45a2=16[(2x)2+(−y)2+a2+2x(−y)+2×(−y)×a+2×a×2x]⇒45x2+45y2−90ax+45a2=16[4x2+y2+a2−4xy−2ay+4ax]⇒45x2+45y2−90x+45a2⇒64x2+16y2+16a2−64xy−32ay+64ax⇒64x2−45x2+16y2−45y2−64xy+64ax+90ax−32ay+16a2−45a2=0⇒19x2−29y2−64xy+154ax−32ay−29a2=0This is the required equation of the hyperbola.(vi)Let S (2,2)be the focus and P(x,y)be a point on the hyperbola
Draw PM perpendicular from P on the directrix.Then by definitionSP=ePM⇒SP2=e2PM2⇒(x−2)2+(y−2)2=22[x+y−9√12+12]2 [∵e=43]⇒x2+4−4x+y2+4−4y=4[x+y−9]22⇒x2+y2−4x−4y+8=2[x+y−9]2⇒x2+y2−4x−4y+8=2[x2+y2+(−9)2+2×x×y+2×y×(−9)+2×(−9)×x]⇒x2+y2−4x−4y+8=2[x2+y2+81+2xy−18y+18x]⇒x2+y2−4x−4y+8=[2x2+2y2+162+4xy+4xy−36y−36x]⇒2x2−x2+2y2−y2+4xy−36x+4x−36y+4y+162−8=0⇒x2+y2+4xy−32x−32y+154=0This is the required equation of the hyperbola.