wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equaion of the hyperbola whose

(i) focus is (0,3), directrix is x+y-1=0 and eccentricity=2

(ii) foucs is (1,1), directrix is 3x+4y+8=0 and eccentricity=2

(iii) focus is (1,1), directrix is 2x+y=1 and 3ccentricity=3

(iv) focus is 92,-1), firectrix is 2x+3y=1 and eccentricity =2.

(v) focus is (a,0).directrix is 2x-y+a=0 and eccentricity =43

(vi) focus is (2,2), directiex is x+y=9 and eccentricity =2.

Open in App
Solution

(i)Let S(0,3) be the focus and P(x,y) be a point on the hyperbola.

Draw PM perpendicular from P on the directrix.Then by definitionSP=ePMSP2=ePM2(x0)2)+(y3)2=(2)2[xy+112+12]2 [=2]x2+y2+96y=4[x+y1]22x+2+y26y+9=2(x+y1)2x+2+y26y+9=2[x2+y2+(1)2+2xy+2×y×(1)+2×(1)×x]x2+y26y+9=2[x2+y2+1+2xy2y2x]x2+y26y+9=2x2+2y2+2+4xy4y4x2x2x2+2y2y2+4xy4x4y+6y+29=0x2+y2+4xy4x+2y7=0This is the required equation of the hyperbola.(ii)Let S(1,1) be the focus and P(x,y)be a point on the hyperbola.

Draw PM perpendicular from P on the directrix .Then by definition SP=ePMSP2=ePM2(x1)2)+(y1)2=(2)2[3x+4y+832+42]2 [=2]x2+12x+y2+12y=4[3x+4y+825]x2+y22x2y+2=4(2x+4y+8)22523x2+25y250x50y+50=4[9x2+16y2+6y+24xy+64y+48x]25x2+25y250x50y+50=36x2+64y256+96xy+256y+192x36x225x2+64y225y2+96xy+192x+50x+256y+50y+25650=011x2+39y2+96xy+242x+306y+206=0This is the required equation of the hyperbola .(iii)Let S(1,1) be the focus and P(x,y) be a point on the hyperbola.

Draw PM perpendicular from P on the directrix.Then by definitionSP=ePMSP2=e2PM2(x1)2)+(y1)2=(3)2[2xy122+22]2 [=2]x2+12x+y2+12y=3[2xy1]255[x2+y22x2y+2]=3(2x+y1)25x2+5y210x10y+10=3[(2x)2+y2+(1)2+2×2x×y+2×y×(1)+2×(1)×2x]5x2+5y210x10y+10=3[4x2+y2+1+4xy2y4x]5x2+5y210x10y+10=12x2+3y2+3+12xy6y12x12x25x2+3y25y2+12xy12x+10x6y+10y+310=07x22y2+12xy2x+4y7=0This is the required equation of the hyperbola.(iv)Let S(2,1) be the focus and P(x,y) be a point on the hyperbola.

Draw PM perpendicular from P on the directrix.Then by definitionSP=ePMSP2=e2PM2(x2)2)+(y+1)2=22[2x+3y122+32]2 [e=2]x2+44x+y2+12y=4[2x3y1]21313[x2+y24x+2y+5]=4(2x+3y1)213x2+13y252x+26y+65=4[2x+3y1]213x2+13y252x+26y+65=4[(2x2)2+(3y)2+(1)2+2×2x×3y+2×3y×(1)+2×(1)×2x]13x2+13y252x+26y+65=4[4x2+9y2+1+12xy6y4x]13x2+13y252x+26y+65=16x2+36y2+4+48xy24y16x16x213x2+36y2+13y2+48xy16x+52x24y26y+465=03x2+23y2+48xy+36x50y61=0This is the required equation of the hyperbola(v)Let S(a,0)be the focus and P(x,y)be a point on the hyperbola.

Draw PM perpendicular from P on the directrix .Then by definitionSP=ePMSP2=ePM2(xa)2+(y0)2=(43)2 [2xy+a22+(1)2]2 [e=43]x2+a22ax+y2=169×[2xy+a]2545[x2+y22ax+a2]=16[2xy+a]245x2+45y290ax+45a2=16[(2x)2+(y)2+a2+2x(y)+2×(y)×a+2×a×2x]45x2+45y290ax+45a2=16[4x2+y2+a24xy2ay+4ax]45x2+45y290x+45a264x2+16y2+16a264xy32ay+64ax64x245x2+16y245y264xy+64ax+90ax32ay+16a245a2=019x229y264xy+154ax32ay29a2=0This is the required equation of the hyperbola.(vi)Let S (2,2)be the focus and P(x,y)be a point on the hyperbola

Draw PM perpendicular from P on the directrix.Then by definitionSP=ePMSP2=e2PM2(x2)2+(y2)2=22[x+y912+12]2 [e=43]x2+44x+y2+44y=4[x+y9]22x2+y24x4y+8=2[x+y9]2x2+y24x4y+8=2[x2+y2+(9)2+2×x×y+2×y×(9)+2×(9)×x]x2+y24x4y+8=2[x2+y2+81+2xy18y+18x]x2+y24x4y+8=[2x2+2y2+162+4xy+4xy36y36x]2x2x2+2y2y2+4xy36x+4x36y+4y+1628=0x2+y2+4xy32x32y+154=0This is the required equation of the hyperbola.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Hyperbola and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon