The two given circles in standard form we
S1=0 or x2+y2−x+3y−32=0
S2=0 or x2+y2+4x+2y+1=0
Radical axis is given by S1−S2=0.
∴−5x+y−52=0
or 10x−2y+5=0.....(1)
Circle coaxial with the given circles is
S1+λS2=0
(x2+y2−x+3y−32)+λ(x2+y2+4x+2y+1)=0
or (x2+y2)(1+λ)−(1−4λ)x+(3+2λ)y−32+λ=0
or x2+y2−1−4λ1+λx+3+2λ1+λy+λ−321+λ=0,
Its centre (12⋅1−4λ1+λ,−12⋅3+2λ1+λ)
i.e. (−g,−f) lies on (1)
∴5(1−4λ)1+λ+3+2λ1+λ+5=0
or 5−20λ+3+2λ+5+5λ=0
or 13−13λ=0∴λ=1
Putting in (2), the required circle is
x2+y2+32x+52y−14=0
or 4x2+4y2+6x+10y−1=0.