The general equation of the circle is
x2+y2+2gx+2fy+c=0.
Given that (4,1) lies on the circle.
16+1+8g+2f+c=0
⇒8g+2f+c=−17 ....(i)
(6,5) lies on the circle.
36+25+12g+10f+c=0
⇒12g+10f+c=−61 ....(ii)
Subtracting equations (i) and (ii), we get
4g+8f=−44
g+4f=−11 ....(iii)
Let (−g,−f) be the centre of the circle lying on 4x+y=16.
∴−4g−f=16 .....(iv)
Now, 2 (iv) + (iii)
−7g=21
⇒g=−3
Substituting this value in equation (iv), we get
−4(−3)−f=16
⇒f=−4
Substitute in (iv), we get
8(−3)+2(−4)+c=−17
⇒−24−8+c=−17
⇒c=15
Therefore, the general equation of the circle is x2+y2−6x−8y+15=0.