Lines
⇒7x2−18xy+7y2 ........(1)
Coefficient of x=y⇒ both lines through origin
- center of circle is on angle bisector of lines.
- Angle bisectors are ether (x+y) or (x−y)
⇒ If is (x-y), as thecontained↓x2+y2−8x−8y=u circle lies in 1st quadrant
⇒ so center lies on y=x,⇒(a,a)
(x−a)2+(y−a)2=c2 ..........(2)
1st distance from center to tangent = Radius
Let tangent ⇒y=mx⇒|y−m2|√1+m2=R⇒a−ma√1+m2=R
⇒R2(m2+1)=a2(1+m2−2m)⇒R2m2+R2=a2+a2m2−2ma2
⇒m2(R2−a2)=a2−R2−2ma2
m2=(a+R)(a+R)(R+a)(R−a)−2ma2(R2−a2)
Company with (1) sum of roots.
2a2R2−a2=−187⇒14a2=−18R2+18a2⇒4a2=18R2
⇒a=3√2Ror3√2C
Radius of given ⇒(x−y)2(y−y)2=(4√)2
R−R1=CC1
⇒(4√2−R)2=(4−3R√2)2×2⇒4√2−R=−√2(4−3R√2)
⇒8√2=4R⇒R=2√2⇒a=3√4×2√2⇒a=6
Center =(6,6). Radius =2\sqrt 2
Circle equation
⇒(x−6)2+(y−6)2=(2√2)2