The differential equation of the curve is given below,
y ′ = e x sinx dy= e x sinxdx
Integrate both sides.
y= ∫ e x sinxdx
Use integration by parts and consider sinxas first function and e x as second function.
I= ∫ e x sinxdx I=sinx ∫ e x dx − ∫ ( d dx sinx ∫ e x dx )dx I= e x sinx− ∫ e x cosxdx
Again use integration by parts and consider cosx as first function and e x as second function.
I= e x sinx−[ cosx ∫ e x dx − ∫ ( d dx cosx ∫ e x dx )dx ] I= e x sinx− e x cosx+( − ∫ e x sinxdx ) I= e x ( sinx−cosx )−I
Further simplify.
2I= e x ( sinx−cosx )+C I= e x 2 ( sinx−cosx )+C
So,
y= e x 2 ( sinx−cosx )+C(1)
Now, this curve passes through point ( 0,0 ) so substitute values for x and y.
0= e 0 ( sin0−cos0 ) 2 +C C=− −1 2 C= 1 2
Substitute the values into equation (1).
y= e x 2 ( sinx−cosx )+ 1 2 2y= e x ( sinx−cosx )+1 2y−1= e x ( sinx−cosx )
Thus, the required equation of the curve passing through ( 0,0 ) is 2y−1= e x ( sinx−cosx ).