Find the equation of a curve passing through the point (0,0) and whose differential equation is y′=exsinx
The given differential equation of the curve is
y′=exsinx or dydx=exsinx
On separating the variables, we get dy=exsinxdx
On intagrating both sides, we get
∫dy=∫exsinxdx ...(i)
Let I=∫exsinxdx ...(ii)
⇒I=sinx∫exdx−∫(ddx(sinx)∫exdx)dx=sinx∫exdx−∫cosx.exdx⇒sinx.ex−(cosx.∫exdx−∫(ddx(cosx).∫exdx)dx)⇒I=sinx.ex−[cosx.ex−∫(−sinx).exdx] =sinx.ex−ex.cosx−∫ex.sinx.dx⇒I=sinx.ex−cosx.ex−1⇒2I=ex(sinx−cosx)⇒I=ex(sinx−cosx)1
On substituting this value in Eq. (i), we get
y=ex(sinx−cosx)2+C ...(iii)
Now, the curve passes through the point (0,0) or we can say x=0, y=0.
∴0=e0(sin0−cos0)2+C
⇒0=1(0−1)2+C⇒C=12
On substituting C=12 in Eq.(iii), we get
y=ex(sinx−cosx)2+12⇒2y=ex(sinx−cosx)+1⇒2y−1=ex(sinx−cosx)
Hence, the required equation of the curve is 2y−1=ex(sinx−cosx)