wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equation of a curve passing through the point (0,0) and whose differential equation is y=exsinx

Open in App
Solution

The given differential equation of the curve is
y=exsinx or dydx=exsinx
On separating the variables, we get dy=exsinxdx
On intagrating both sides, we get
dy=exsinxdx ...(i)
Let I=exsinxdx ...(ii)
I=sinxexdx(ddx(sinx)exdx)dx=sinxexdxcosx.exdxsinx.ex(cosx.exdx(ddx(cosx).exdx)dx)I=sinx.ex[cosx.ex(sinx).exdx] =sinx.exex.cosxex.sinx.dxI=sinx.excosx.ex12I=ex(sinxcosx)I=ex(sinxcosx)1
On substituting this value in Eq. (i), we get
y=ex(sinxcosx)2+C ...(iii)
Now, the curve passes through the point (0,0) or we can say x=0, y=0.
0=e0(sin0cos0)2+C
0=1(01)2+CC=12
On substituting C=12 in Eq.(iii), we get
y=ex(sinxcosx)2+122y=ex(sinxcosx)+12y1=ex(sinxcosx)
Hence, the required equation of the curve is 2y1=ex(sinxcosx)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ellipse and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon