Find the equation of a line which passes through (2,−1,3) and is perpendicular to the line; ¯¯¯r=(^i+^j−^k)+λ(2^i−2^j+^k) and ¯¯¯r=(^2i−^j+3^k)+μ(^i+2^j+2^k)
A
¯¯¯r=(^2i−^j+3^k)+λ(^−6i−3^j+6^k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
¯¯¯r=(^i+2^j+2^k)+λ(^−6i−3^j+6^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
¯¯¯r=(2^i−2^j+^k)+λ(^−6i−3^j+6^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A¯¯¯r=(^2i−^j+3^k)+λ(^−6i−3^j+6^k) To find a straight line perpendicular to given lines, →r=→a1+−−→λb1 and →r=→a2+−−→λb2 has dr's pro-portional to →b=→b1×→b2 Now, →b=∣∣
∣
∣∣^i^j^k2−21122∣∣
∣
∣∣=−6^i−3^j+6^k Thus, the required line passes through the point (2,−1,3) and is parallel to the vector, →b=−^6i−3^j+6^k ∴ its equation is →r=(2^i−^j+^3k)+λ(−6^i−3^j+6^k)