The focus of the parabola is F(−1,−2) and directrix is the line x−2y+3=0
Let P(x,y) be any point in the plane of focus and directrix, and MP be the perpendicular distance from P to the directrix, then P lies on the parabola iff FP=MP
⇒√(x+1)2+(y+2)2=|x−2y+3|√12+(−2)2
⇒√(x+1)2+(y+2)2=|x−2y+3|√1+4
⇒√(x+1)2+(y+2)2=|x−2y+3|√5
⇒5[(x+1)2+(y+2)2]=(x−2y+3)2
⇒5[x2+2x+1+y2+4y+4]=x2+4y2+9−4xy−12y+6x
⇒5[x2+2x+y2+4y+5]=x2+4y2+9−4xy−12y+6x
⇒5x2+10x+5y2+20y+25−x2−4y2−9+4xy+12y−6x=0
⇒4x2+y2+4xy+4x+32y+16=0 is the required equation of the parabola.