Let →AB=5ˆi+2ˆj+4ˆk−3ˆi+ˆj−2ˆk=2ˆi+3ˆj+2ˆk,→BC=−ˆi−ˆj+6ˆk−5ˆi−2ˆj+6ˆk−5ˆi−2ˆj−4ˆk=−6ˆi−3ˆj+2ˆk
So, normal to the plane determined by the points A,B and C is →m=→AB×→BC
∴→m=∣∣
∣
∣∣ˆiˆjˆk232−6−32∣∣
∣
∣∣=12ˆi−16ˆj+12ˆk∴ d.r.'s of normal to the required plane π : 3,-4,3
[Note that the required plane and plane through A, B, C are parallel.]
Also the plane π passes through P(6,5,9) i.e., →a=6ˆi+5ˆj+9ˆk
∴π:→r.→m=→a.→m⇒→r. (3ˆi−4ˆj+3ˆk)=(6ˆi+5ˆj+9ˆk).(3ˆ3−4ˆj+3ˆk)
⇒→r.(3ˆi−4ˆj+3ˆk) = 18-20+27
∴→r.(3ˆi−4j+3ˆk)==25 or 3x−4y+3z=25...(i)
Now distance of (i) from A(3,-1,2) = |3×3−4×(−1)+3×2−25|√32+(−4)2+32=6√34 units.