The correct option is C 31x + 15y + 30 = 0
The given equations of the first two lines are:
3x+y+2=0⇒3x+y=−2…..(1)
x–2y−4=0⇒x–2y=4…......(2)
Now, (1)×2⇒6x+2y=−4….....(3)
(2)×1⇒x−2y=4…........(4)
(3)+(4)⇒7x=0⇒x=0
Substitute the value of x=0 in (1)
3(0)+y=−2⇒y=−2
The point of intersection is (0,−2).
The given equations of the other two lines are:
7x–3y=−12…..(5)
2y=x+3⇒−x+2y=3…..(6)
Now, (5)×1⇒7x–3y=−12…..(7)
(6)×7⇒−7x+14y=21…..(8)
(7)+(8)⇒11y=9⇒y=911
Substitute the value of y=911 in (6)
–x+2(911)=3⇒−x+1811=3
⇒−x=3–1811=33−1811=1511
x=−1511
The point of intersection is (−1511,911)
Equation of the line joining the points (0,−2) and (−1511,911) is:
y−y1y2−y1=x−x1x2−x1
y+2911+2=x−0−1511−0
y+23111=−11x15
⇒−31x=15y+30
⇒31x+15y+30=0
The required equation is 31x+15y+30=0