Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30∘ with x-axis and which forms a triangle of area 50 / √3 with the axes.
α=30∘
It is given that,
area of triangle=50√3
In triangle OLA and OLB
cos 30∘=OLOA and cos 60∘=OLOB
⇒ √32=pOB and 12=pOB
⇒ OA=2p√3 and OB=2p
are of triangle=12r2 sin θ=50√3
sin 30=12
12×OA×OB=50√3
12×2p×2p√3=50√3
p2=50√3×√32=25
p± 5
Now, equation of the line is x cos α+y
sin α=p
x cos α+y sin α=± 5
x cos 30∘+y sin 30∘=± 5
By substituting the values,
x√32+y2=± 5
√3 x+y=± 10
⇒ √3 x+y=10