Find the equation of a straight line passing through the point of intersection of x+2y+3=0 and 3x+4y+7=0 and perpenicular to the straight line x-y+0=0
The equation of the equired line is
(x+2y+3)+λ(3x+4y+7)=0
or x(1+3λ)+y(2+4λ)+3+7λ=0
m1=slopeoftheline=−(1+3λ2+4λ)
The line is perpendiccular to x-y+9=0
whose slope (m2=1)
∴m1×m2=−1
⇒=−(1+3λ2+4λ)×1=−1
⇒1+3λ=2+4λ
⇒λ=−1
∴ The required line is
x+2y+3+λ(2x+4y+7)=0
Put the value of λ=−1
x+2y+3−(3x+4y+7)=0
−2x−2y−4=0
or,x+y+2=0