Given curve is y=1x2−2x+3⋯(i)
Slope of tangent is dydx
dydx=ddx(1x2−2x+3)
⇒dydx=d(x2−2x+3)−1dx
⇒dydx=−1(x2−2x+3)−2.ddx(x2−2x+3)
⇒dydx=−(x2−2x+3)−2(2x−2)
⇒dydx=−2(x2−2x+3)−2(x−1)
⇒dydx=−2(x−1)(x2−2x+3)2
Given slope of tangent is 0
⇒dydx=0
⇒−2(x−1)(x2−2x+3)2=0
⇒x=1
Putting x=1 in equation (i):
y=1x2+2x+3
⇒y=1(1)2−2(1)+3
⇒y=12
Point is (1,12)
Now, equation of tangent passing through point (1,12) and slope 0, is (y−12)=0(x−1)
⇒y−12=0
⇒y=12
Hence, the equation of tangent is y=12.