Let the equation of the required ellipse be
x2a2+y2b2=1, where a>b ...(i)
The required ellipse passes through (4,3) and (-1,4)
∴(4)2a2+(3)2b2=1
16a2+9b2=1
⇒16b2+9a2=a2b2 ...(ii)
and (−1)2a2+(4)2b2=1
⇒1a2×16b2=1
⇒b2+16a2=a2b2 ...(iii)
Multiplying equation (iii) by 16, we get
16b2+256a2=16a2b2 ...(iv)
Substracting equation (ii) from equation (iv), we get
256a2−9a2=16a2b2−a2b2
⇒247a2=15a2b2
⇒24715=b2
⇒b2=24715
Putting b2=24715 in equation (iii), we get
24715+16a2=a2×24715
⇒16a2−247a215=−24715
⇒240a2−247a215=−24715
⇒−7a2=−247
⇒a2=2477
Putting a2=2477 and b2=24715 in equation (i), we get,
x22477+y224715=1
⇒7x2247+15y2247=1
This is the equation of the required ellipse.