Let the equation of the ellipse be
x2a2+y2b2=1, where a>b
Now,
b2=a2(1−e2)
⇒b2=a2[1−(√25)2]
⇒b2=a2[1−25]
⇒b2=a2×35
⇒b2=3a25 ...(i)
Ths required ellipse passes through (-3,1)
∴(−3)2a2+12b2=1
⇒9a2+1b2=1 ...(ii)
Putting b2=3a25 in equation (ii), we get
9a2+13a25=1
⇒9a2+53a2=1
⇒1a2[91+53]
⇒27+53=a2
→323=a2
⇒a2=323
Putting a2=323 in equation (ii), we get
b2=35×323=325
Substituting a2=323 and b2=325 in equation (i), we get,
x2323+y2325=1
⇒3x232+5y232=1
⇒3x2+5y2=32
This is the equation of the required ellipse.