Let the equation of the required ellipse be
x2a2+y2b2=1 ...(i)
The coordinates of its foci are (±ae,0),
i.e., (±3,0)
∴ ae=3
⇒(ae)2=9^{2} \) ...(i)^{2} The required ellipse passes through (4,1)
∴42a2+12b2=1
⇒16b2+a2=a2b2
⇒a2+16b2=a2b2 ...(ii)
Now,
b2=a2(1−e2)
⇒b2=a2−a2e2
⇒b2=a2−9 [Using equation (i)] ...(iii)
Substituting b2=a2−9 in equation (ii), we get
a2+16(a2−9)=a2(a2−9)
⇒a2+16a2−144=a4−9a2
⇒17a2−144=a2−9a2
⇒a4−9a2−17a2+144=0
⇒a4−26a2+144=0
⇒a4)−18a2−8a2+144=0
⇒a2(a2−18)−8(a2−8)=0
⇒(a2−18)(a2−8)=0
⇒a2=18 or, a2≠8
⇒a2=18
Putting a2=18 in equation (iii), we get
∴ The required equation of the ellipse is x218y29=1