Let the equation of the required ellipse be
x2a2+y2b2=1, where a Now,
a2=b2(1−e2)
⇒a2=b2(1−e2
⇒a2=b2[1−(34)2]
⇒a2=b2[1−916]
⇒a2=b2×716
⇒a2=716b2 ...(ii)
The required ellipse through (6,4).
∴(6)2a2+(4)2b2=1
⇒36a2+16b2=1
⇒362716b2+16b2=1
⇒36×367b2+16b2=1
⇒5767b2+16b2=1
⇒1b2[5767+161]=1
⇒5767+161=b2
⇒b2=6887
Putting b2=6887 in equation (i), we get
a2=716×6887
⇒a2=68816=43
Putting a2=43 and b2=6887 in equation (i), we get,
x243+y26887=1
⇒x243+7y2688=1
This is the equation of the required ellipse.