If (h,k) be the centre, then p=r gives
h+k−2√2=±h−k−2√2=√(h−4)2+(k+3)2
Taking +ive sign, we have k=0
and (h−2√2)2=(h−4)2+9
∴h2+20h+46=0
∴h=−10±3√6
and r2=(h−4)2+9=(−12±3√6)22
Taking -ive sign, we have h=2
∴(k12)2=36+(k−3)2
or k2−12k+90=0
Its roots are imaginary.
Hence the required circle is
(x−h)2+(y−0)2=r2 etc.