Find the equation of circle(s) at any point on which the line joining the points (-1,1) and (5,5) subtends an angle of 45∘.
Open in App
Solution
Any circle through two points A, B by (n), is (x+1)(x+5)(y−1)(y−5)+λ(2x−3y+5)=0 or x2+y2−4x−6y+λ(2x−3y+5)=0......(1) or x2+y2−x(2λ−4)−y(−3λ−6)+5λ=0 Since AB students 45∘ at any point P , hence angle subtended by AB at centre C is 90∘ Clearly CM is right bisector of AB ∴AM=CM=BM=12AB=√13 ∴r=AC=√13+13=√26 ∴26=r2=g2+f2−c (2λ−42)2+(−3λ−62)2−5λ=26 or 4(λ2−4λ+4)+9(λ2−4λ+4)−20λ=104 or 13λ2−52=0λ=±2 Putting the values of λ in (1) , the required circles are x2+y2−12y+10=0 and x2+y2−8x−10=0